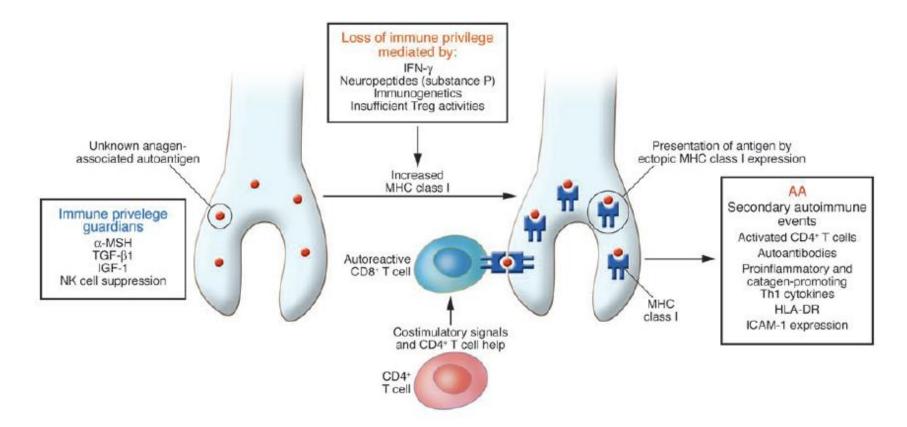
Aclaris Therapeutics R&D and Investor Day October 4, 2017 Genetics and Immunology of Alopecia Areata

Genetics and Immunology of Alopecia Areata

Angela M. Christiano, Ph.D.

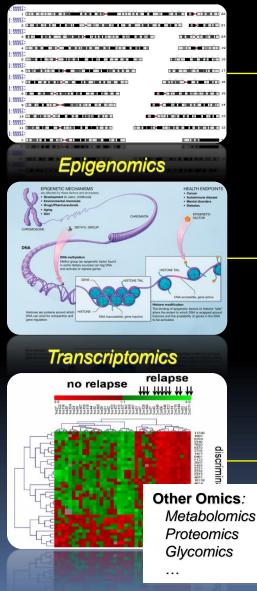
Julian Mackay-Wiggan & Raphael Clynes Columbia University College of Physicians & Surgeons

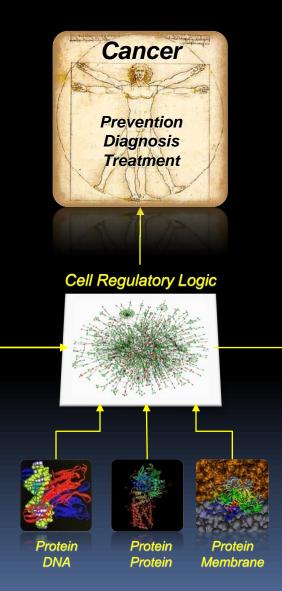

Madeleine Duvic, MD Anderson Maria Hordinsky, Univ of Minnesota Vera Price, UCSF David Norris, University of Colorado

Disclosures

- Board Member: Dystrophic EB Research Association of America
- Scientific Advisory Council Chair: National Alopecia Areata Foundation
- Board Member: North American Hair Research Society
- Board Member: Douglass College of Rutgers University
- Research Grant Recipient: Bristol-Myers Squibb
- Research Grant Recipient: Pfizer
- Scientific Advisor, Shareholder, Consultant: Aclaris Therapeutics
- Consultant: Dermira
- Co-Founder: Rapunzel Bioscience
- President 2016-2017: Society for Investigative Dermatology

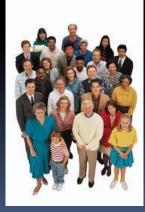
Challenge of Alopecia Areata Pathogenesis: Collapse of Immune privilege of the Hair Follicle


Figure 3


Proposed pathogenesis of AA. Cytokines and cellular factors responsible for maintaining immune privilege are listed in the left box. Those factors believed to mediate loss of immune privilege and initiation of disease are listed in the middle box. Loss of immune privilege is associated with expression of MHC class I molecules, which are capable of presenting hair follicle autoantigens to T lymphocytes. Secondary autoimmune amplification circuits that may help establish or amplify the pathology are listed in the right box.

From Gilhar, Paus & Kalish, JCI, 2007

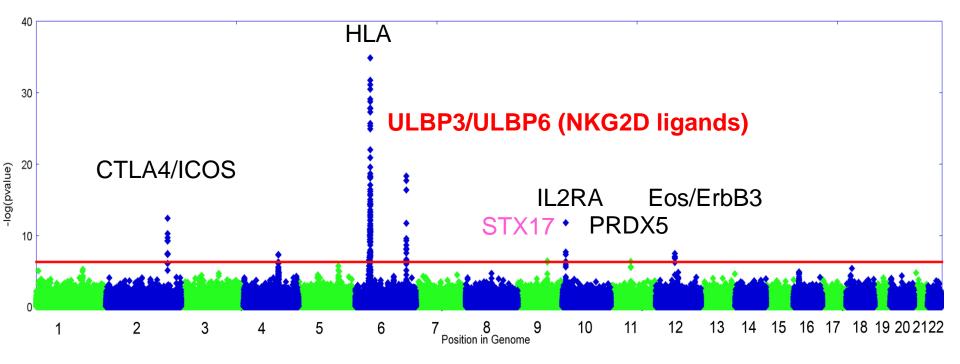
Functional Genomics: How to Apply to AA?


Genomics

Drugs & Biomarkers

Clinical Trials

Slide courtesy of Dr. Andrea Califano


Outline

Genetics of Alopecia Areata

Immunology of Alopecia Areata

 Translational Research and Clinical Studies

Genomewide Association Studies (GWAS) in Alopecia Areata

Genome-wide Association Study in AA

Vol 466 1 July 2010 dol:10.1038/ nature09114					
Region	Gene	Function	Strongest association (P value)	Maximum odds ratio	Involved in other autoimmune disease
2q33.2	CTLA4	Co-stimulatory family	$3.55 imes 10^{-13}$	1.44	T1D, RA, CeD, MS, SLE, GD
	ICOS	Co-stimulatory family	4.33×10^{-8}	1.32	
4q27	IL-21/IL-2	T-, B- and NK-cell proliferation	4.27×10^{-8}	1.34	T1D, RA, CeD, PS
6q25.1	ULBP6	NKG2D activating ligand	4.49×10^{-19}	1.65	None
	ULBP3	NKG2D activating ligand	4.43×10^{-17}	1.52	None
9q31.1	STX17	Premature hair greying	3.60×10^{-7}	1.33	None
10p15.1	IL-2RA	T-cell proliferation	1.74×10^{-12}	1.41	T1D, MS, GD, GV
11q13	PRDX5	Antioxidant enzyme	4.14×10^{-7}	1.33	MS
12q13	Eos (IKZF4)	T _{reg} transcription factor	3.21×10^{-8}	1.34	T1D, SLE
	ERBB3	Epidermal growth factor recepted	or $1.27 imes10^{-7}$	1.34	T1D, SLE
6p21.32	MICA	NKG2D activating ligand	1.19×10^{-7}	1.44	T1D, RA, CeD, UC, PS, SLE
(HLA)	NOTCH4	Haematopoietic differentiation	1.03×10^{-8}	1.61	T1D, RA, MS
	C6orf10	Unknown	1.45×10^{-16}	2.36	T1D, RA, PS, GV
	BTNL2	Co-stimulatory family	2.11×10^{-26}	2.70	T1D, RA, UC, CD, SLE, MS, GV
	HLA-DRA	Antigen presentation	2.93×10^{-31}	2.62	T1D, RA, CeD, MS, GV
	HLA-DQA1	Antigen presentation	3.60×10^{-17}	2.15	T1D, RA, CeD, MS, SLE, PS, CD, UC, GD
	HLA-DQA2	Antigen presentation	1.38×10^{-35}	5.43	T1D, RA
2	HLA-DQB2	Antigen presentation	1.73×10^{-13}	1.60	RA

Surprises

Vol 466 1 July 2010 doi:10 1038 /nature00114

Pathways

Costimulatory Pathway NKG2D axis Cytokine signaling

Aligned Diseases

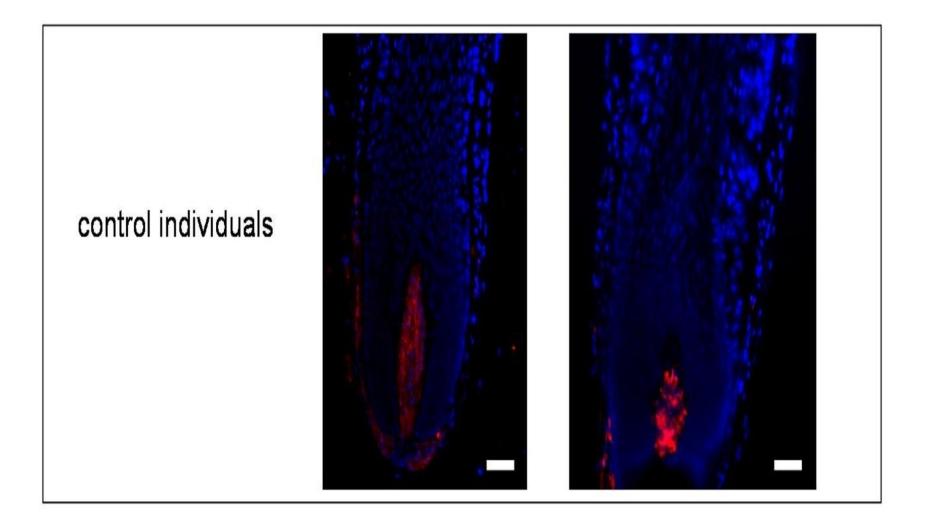
ontrator

Type 1 diabetes Rheumatoid arthritis Celiac disease How have genetic studies advanced our understanding of disease pathogenesis?

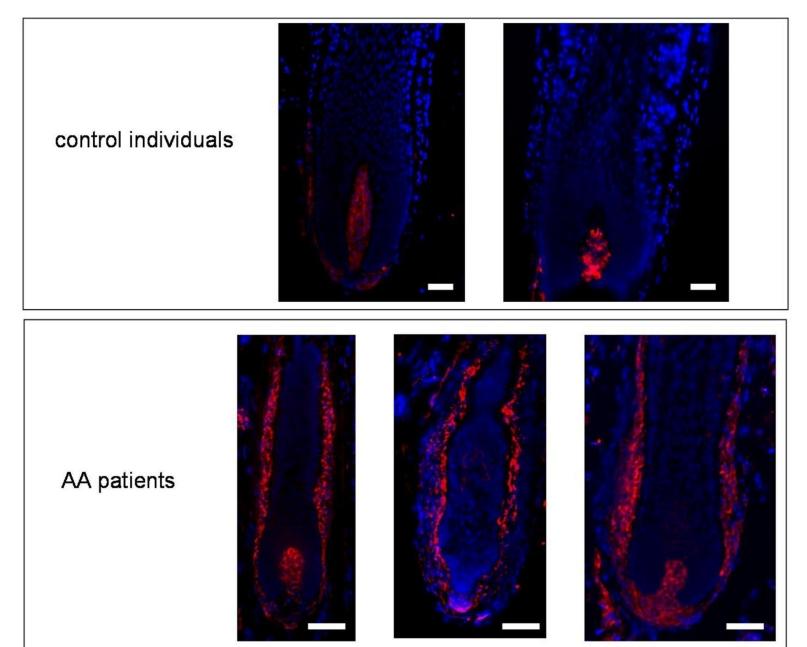
 How have genetic studies led to translational research and new clinical approaches?

Common pathways with other Autoimmune diseases: NK ligands in the target organs

• In RA, synoviocytes aberrantly express MIC ligands, leading to autoreactive T cell stimulation.

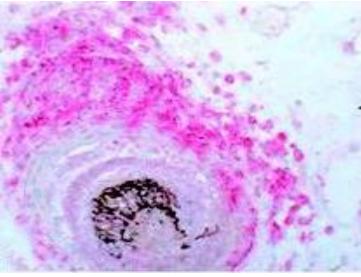

 In Celiac disease, MIC ligands are overexpressed in the gut epithelium during active disease.

• In Type 1 diabetes, Islet cells in prediabetic NOD mice express RAE-1 ligand.


Hypothesis: In AA, do we find overexpression of ULBP3 in the hair follicle?

The aberrant expression of NK activating ligands in genetically predisposed individuals may induce or exacerbate disease.

Danger Signals: ULBP3 Expression in the Hair Follicle

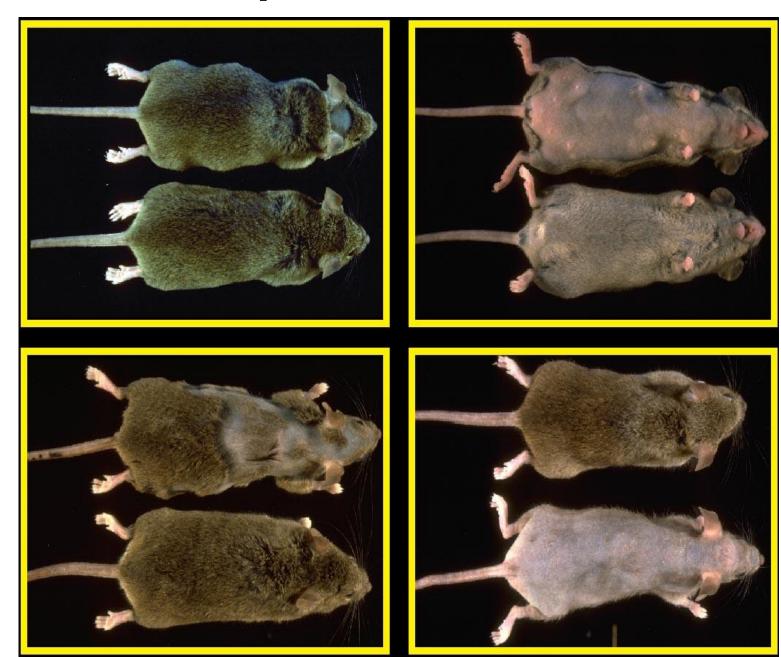

Danger Signals: ULBP3 Expression in the Hair Follicle

AA is caused by 'swarm of bees' Killer CD8 T cells attracted by NKG2DL

AA 2010: Bees are identified AA HF of an AA patient control individual H&F ULBP3 **ULBP3**

Pre-2010 Swarm of Bees

*Collaboration with Raphael Clynes


Outline

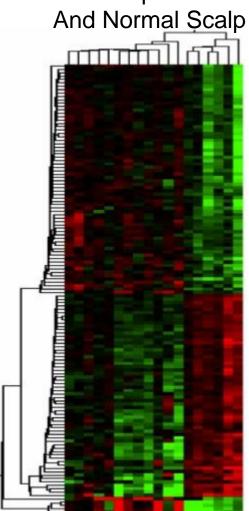
Genetics of Alopecia Areata

Immunology of Alopecia Areata

 Translational Research and Clinical Studies

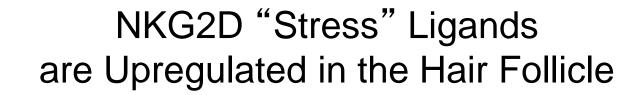
Alopecia Areata in Mice

Shared Pathogenesis in Human and C3H/HeJ Mouse

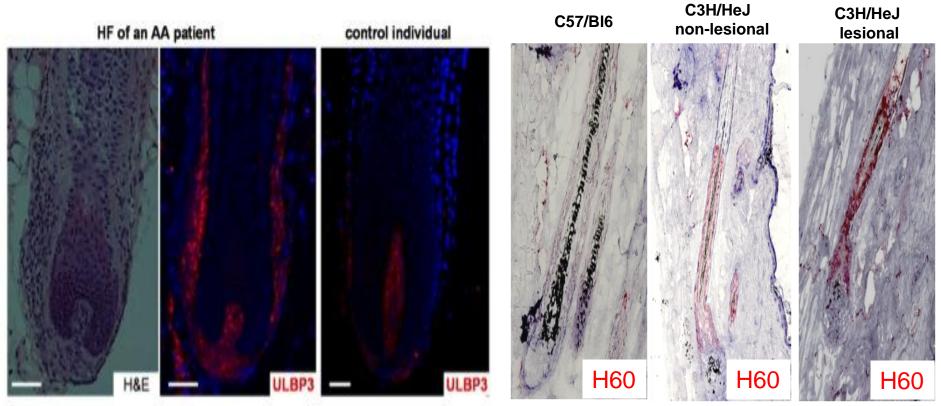

Comparative Transcriptomics Reveals Shared IFN Response Signature

Human Alopecia Areata And Normal Scalp

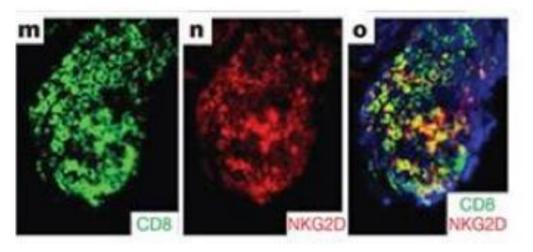
Gene Expression in Human and Mouse AA


	Mouse				
	Fold				
	Upregulated	Gene			
	37.489223	Cxcl10			
	75.22101	Cxcl9			
*	14.440988	Cd8a			
*	14.508814	Stat1			
	20.594664	lfi44			
	6.1081963	Ccl2			
\star	56.385307	Gzma			
	2.905758	Rsad2			
\star	2.068105	Ptprc			
\star	2.5370347	Tlr3			
	8.396741	Cd274			

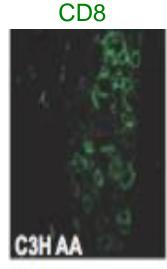
Human					
	Fold				
Gene	Upregulated				
CXCL10	6.749738				
CXCL9	6.3546677				
CD8A	2.8763134				
STAT1	2.647132				
IFI44	2.504809				
CCL2	2.4538028				
GZMA	2.4454105				
RSAD2	2.1267016				
PTPRC	2.0699668				
TLR3	2.0492992				
CD274	2.0426362				


AA Normal

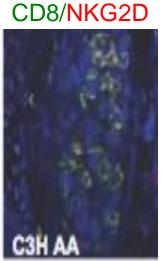
Shared Pathogenesis in Human and Mouse

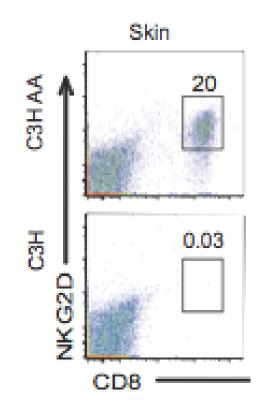

Human Alopecia

Mouse Alopecia

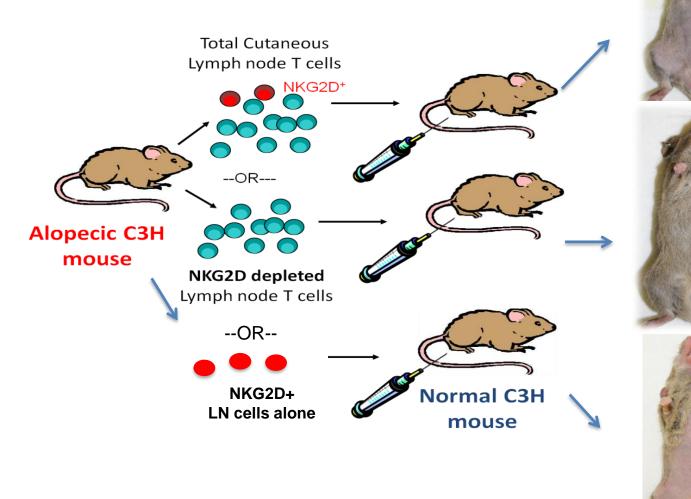

Pethukova, Nature 2010

CD8+NKG2D+ Cytotoxic T Cells infiltrate the AA Hair follicle Human Alopecia




Pethukova, Nature 2010

Mouse Alopecia



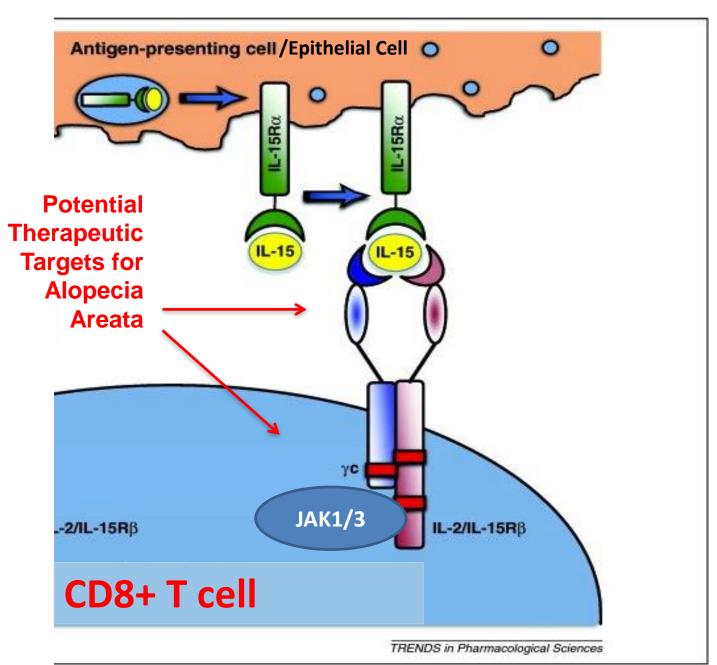
CD8+ NKG2D+ T cells are Necessary and Sufficient for T Cell Transfer of AA

Xing, et al, Nature Medicine 2014

Shared Characteristics between Human AA and the C3H/HeJ Mouse Model

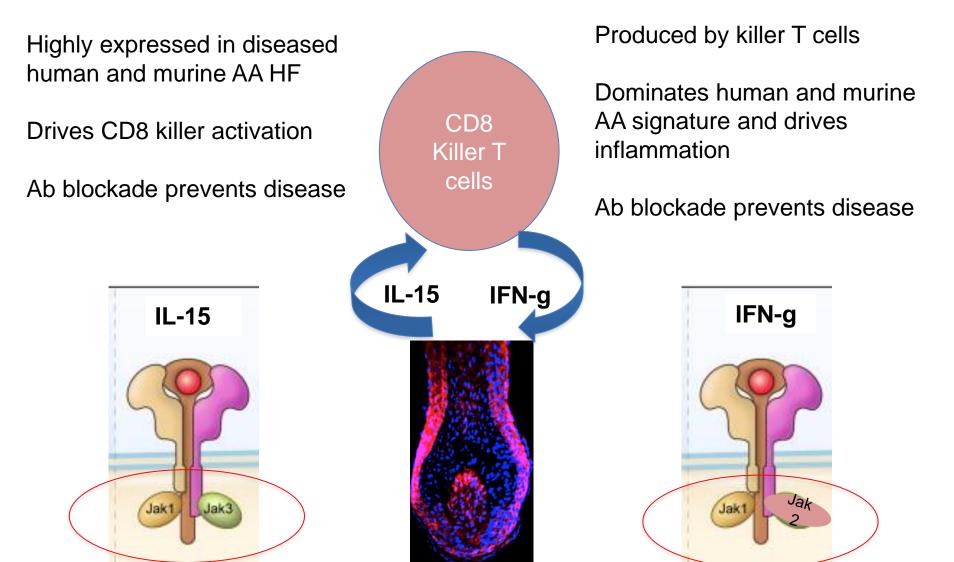
Several lines of evidence support the relevance of the model

- 1. End–organ drivers
- 2. Immune effectors \rightarrow CD8 T cell effectors

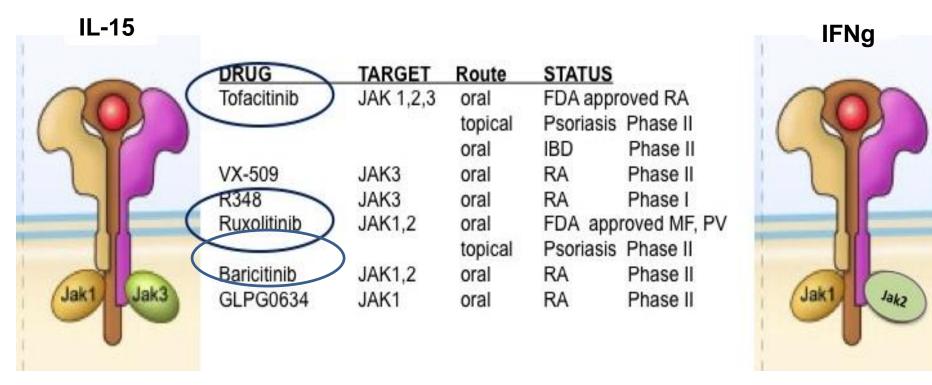

- NKG2DL (ULBP3, MICA), and IL-15 in HF \rightarrow
- 3. **Biomarkers** \rightarrow IFN-transcriptional signature
- 4. TCR Repertoire \rightarrow evidence for antigenic drive

Using the mouse model, we have validated relevant cytokine pathways in AA (such as IFNg, IL15, IL2), using blocking antibodies to prevent disease onset.

To reverse established disease, rather than using a biologic.


How do we target our CD8+ killers?

JAK kinases: Therapeutic targets in Alopecia Areata

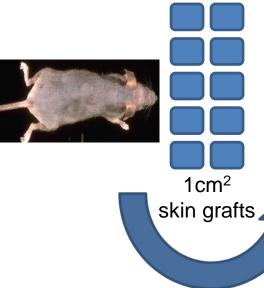

IL-15 and IFNg are Critical Cytokines for CD8+NKG2D+ Killer T Cells

Hypothesis: Can we target their Effector JAK Kinases?

JAK Inhibitors in Clinical Development

O' Shea, Immunity 2012

Pre-clinical C3H-HeJ mouse model of alopecia areata


C3H/HeJ Spontaneous alopecia areata \rightarrow 15% incidence in 6-12 months

C3H/HeJ Skin Graft Model → 100% incidence in 6-12 weeks McElwee, JID 1998

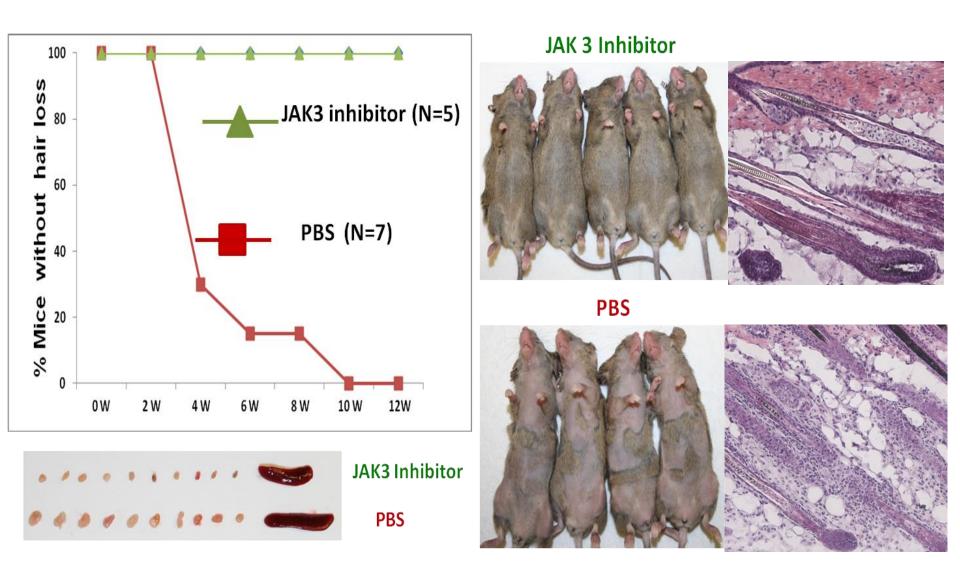
Prevention Model→ Give drug at the time of grafting

Treatment Model \rightarrow Give drug after onset of disease (6 weeks or later)

AA skin donor

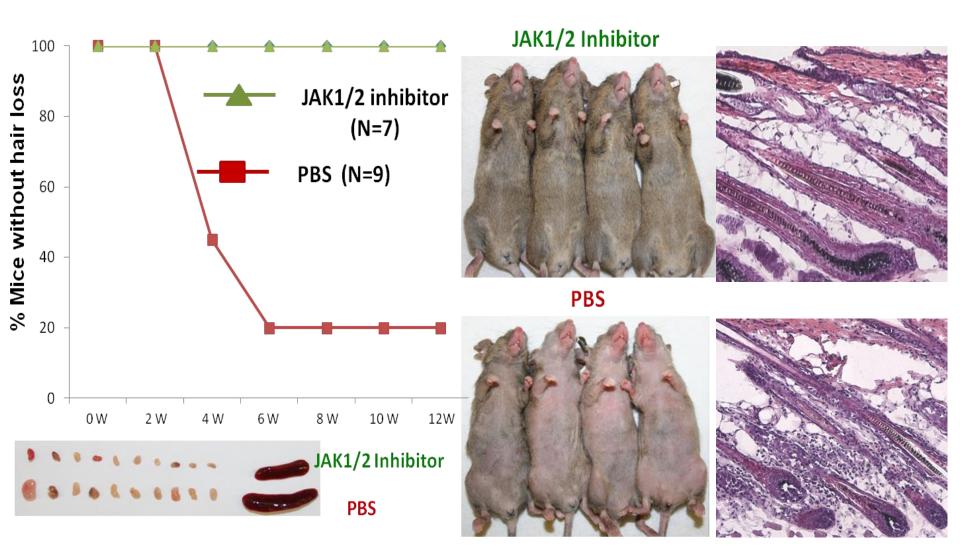
AA graft recipients

6 weeks Patchy AA

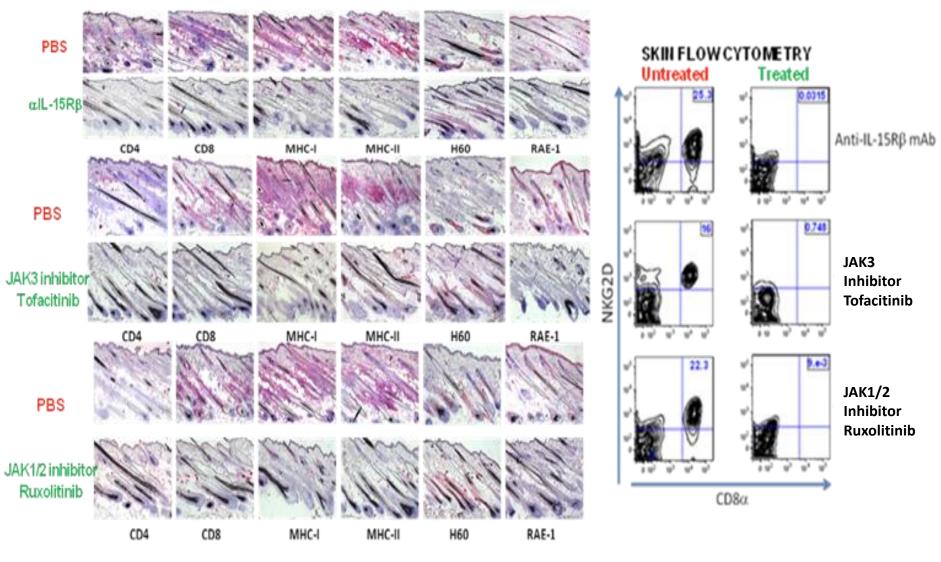

16 weeks AT/AU

Pre-clinical studies with systemic delivery

JAK1/2 Inhibitor (ruxolitinib)


JAK3 inhibitor (tofacitinib)

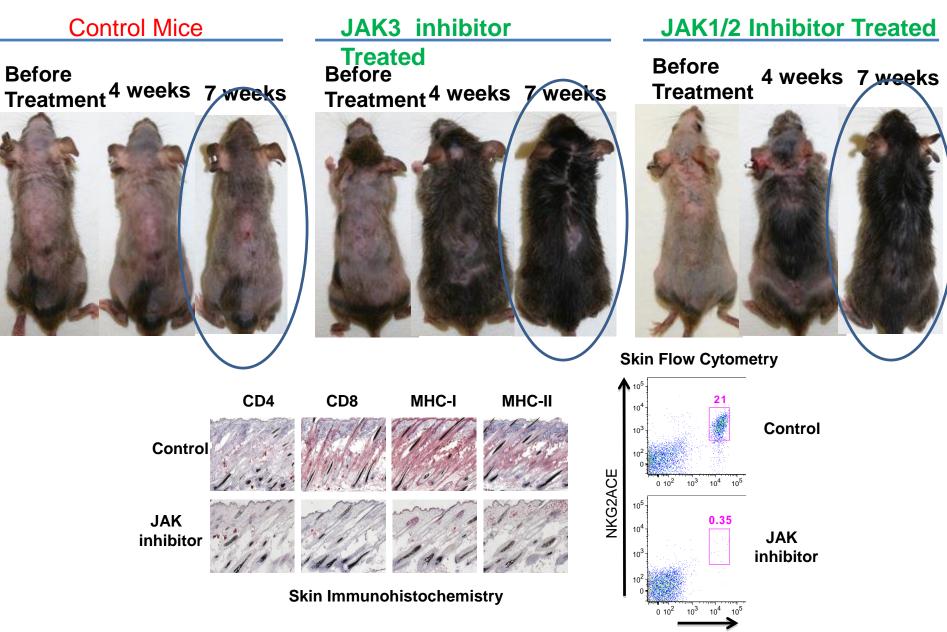
JAK 3 Inhibitor (Tofacitinib) Prevents Alopecia Areata


Xing, et al, Nature Medicine 2014

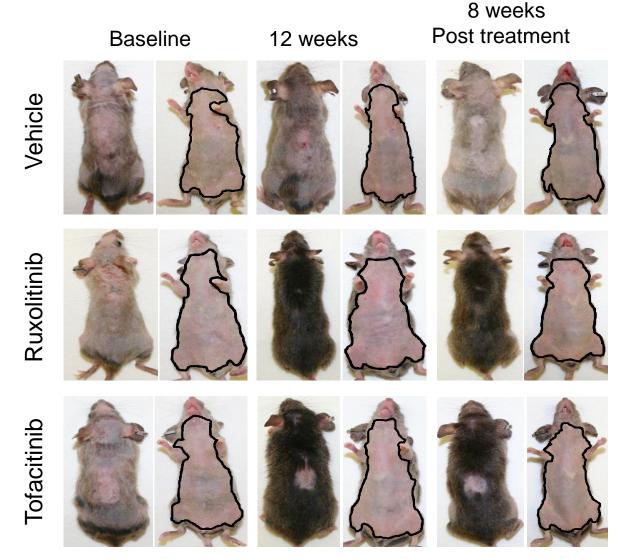
JAK 1/2 Inhibitor (Ruxolitinib) Prevents Alopecia Areata

Xing, et al, Nature Medicine 2014

Normalization of inflammatory infiltrates in AA prevention model using systemic delivery

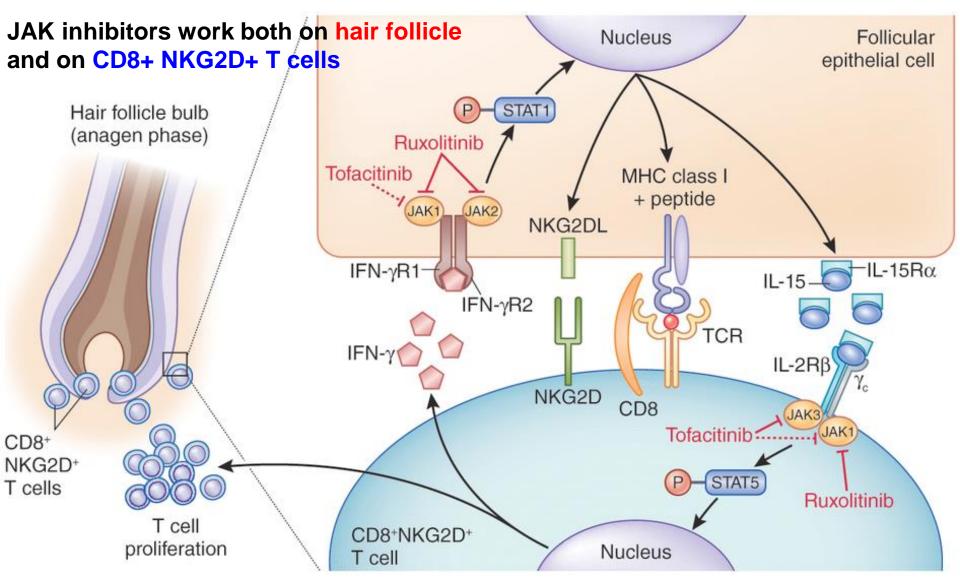

Xing, et al, Nature Medicine 2014

Pre-clinical studies with topical delivery


JAK1/2 Inhibitor (ruxolitinib)

JAK3 inhibitor (tofacitinib)

Topical treatment results in reversal of long-standing AA (2-3 months duration)

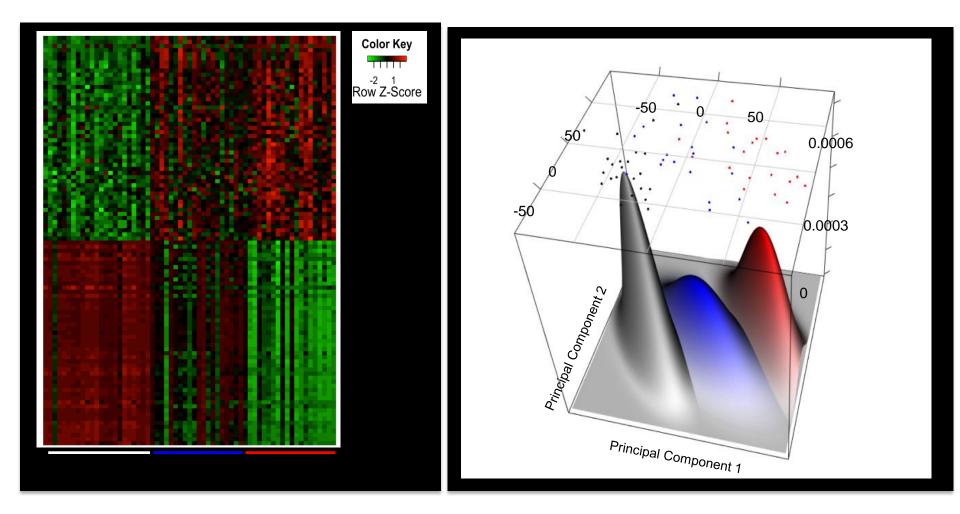

Topical treatment with JAKi is durable and *does not* show evidence of systemic absorption

back belly

back belly

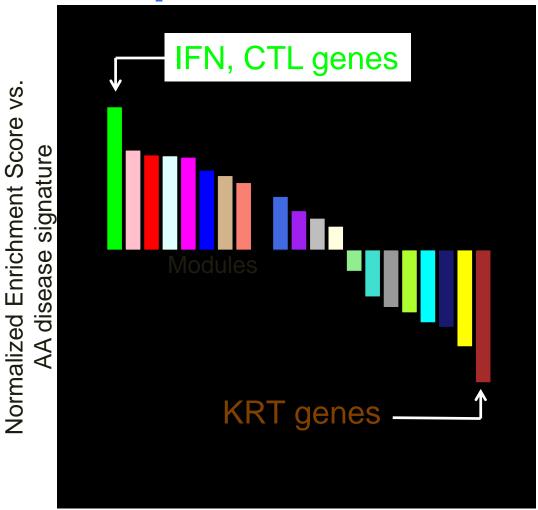
back belly

Xing *et al.*² show that CD8⁺ NKG2D⁺T cells infiltrate the dermis and localize to the hair follicle bulb, where they form immune synapses with follicular epithelial cells through major histocompatibility complex (MHC) class I–peptide complexes and NKG2DL. Activated CD8⁺ T cells release IFN- γ , which binds the IFN- γ R on the surface of the follicular epithelial cell, which in turn signals via JAK1 and JAK2 to promote production of IL-15, a mediator of CD8⁺ T cell induction, and its chaperone IL-15R α . This binds the IL-15R complex (IL-2R β and γ_c) on the CD8⁺ T cell surface, causing signaling via JAK1 and JAK3 to enhance the production of IFN- γ and amplify the feedback loop. Ruxolitinib and tofacitinib are small-molecule JAK inhibitors that interfere with this feedback loop; ruxolitinib inhibits JAK1 and JAK2, and tofacitinib inhibits JAK3 more strongly than JAK1. These inhibitors are able to alleviate the AA symptoms. STAT1, signal transducer and activator of transcription-1; TCR, T cell receptor; STAT5, signal transducer and activator of transcription-5.

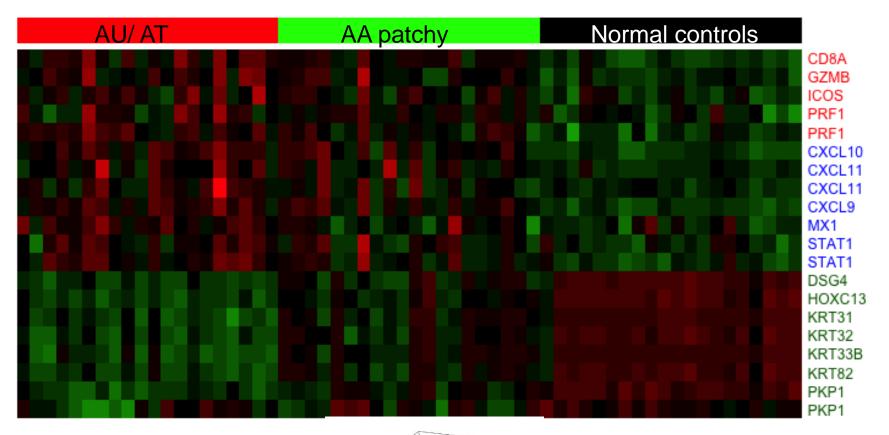

Outline

• Genetics of Alopecia Areata

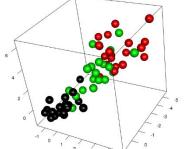
Immunology of Alopecia Areata


 Translational Research and Clinical Studies

Alopecia Areata Disease Signatures


Jabbari, et al. EBioMedicine. 7:240-7, 2016

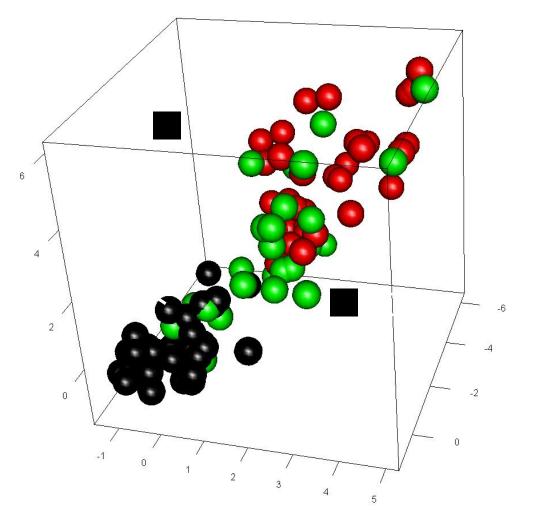
Gene Expression Modules in Human Alopecia Areata



Jabbari, et al. EBioMedicine. 7:240-7, 2016

ALADIN analysis of AA patient biopsies

CTL signature IFN signature KER signature


Jabbari, et al. EBioMedicine. 7:240-7, 2016

Alopecia Areata Disease Activity Index (ALADIN)

- Alopecia Areata Disease Activity Index (ALADIN),
 a multi-dimensional quantitative composite score that may be used as an AA "molecular distance to health" (Pankla et al 2009).
- ALADIN is comprised of three signature scores: a CTL score, an IFN score and a KER score.
- ALADIN is being assessed and refined in our biomarker and clinical studies to evaluate its utility in human AA.

Jabbari, et al. EBioMedicine. 7:240-7, 2016

Alopecia Areata Disease Activity Index (ALADIN)

AU/AT AAP Normal

Jabbari, et al. EBioMedicine. 7:240-7, 2016

Molecular signatures define alopecia areata subtypes and transcriptional biomarkers

Conventional thinking in AA..

- Efficacy of topical immunotherapies in AU/AT may be lower in longstanding disease
- AU/AT biopsies often appear devoid of hair follicles, as well as immune infiltrates, "burned out" disease
- AU/AT is more recalcitrant to therapy than AAP

Contrary to dogma, gene expression profiling reveals a <u>more exaggerated</u> immune profile in AU/AT compared with AAP, suggesting that even long-standing disease may be treatable using rational therapies

Jabbari et al, ebiomedicine 7:240-247, 2016

FDA-Approved JAK Inhibitors

JAK3 (pan-JAK) inhibitor

Rheumatoid arthritis

JAK1/2 Inhibitor

Myelofibrosis

JAK targeted to make a difference

JAK inhibitors are potent immunosuppressive agents with associated risks: Are they safe and effective in alopecia areata?

Ruxolitinib – study design PI: Julian Mackay-Wiggan, MD, MPH

- Open-label, single arm pilot study
- 12 patients (initially 10), duration of disease from 2-34 years
- 10 Moderate to severe patch type AA, 2 AT/AU (s/p modification)
- Treatment with ruxolitinib 20mg BID for 3 to 6 months.
- Efficacy measured by hair re-growth as determined by physical exam, SALT score and photography, and by patient and physician evaluation scores.
- Patients followed for 3 months after treatment to evaluate durability of response.
- Biopsies and peripheral blood obtained at baseline and at 12 weeks for immune monitoring and molecular studies. Additional biopsies and blood draws (1-3 anticipated) obtained as clinically indicated
- QOL measures at baseline and at various additional time points

Efficacy of Ruxolitinib in AA

- 9 of 12 patients (75%) achieved the primary outcome of at least 50% regrowth measured by SALT score
- Response is seen as early as 1 month (subtle patchy regrowth)
- Regrowth progresses steadily with continued patchy regrowth usually by 3 months
- 3 non-responders
- 3 patients with mod/severe relapse, 6 patients with mild

Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.

Severity of Alopecia Tool - SALT Score

SPECIAL ARTICLE

Alopecia areata investigational assessment guidelines-Part II

Elise A. Olsen, MD,^a Maria K. Hordinsky, MD,^b Vera H. Price, MD,^c Janet L. Roberts, MD,^d Jerry Shapiro, MD, e Doug Canfield, Madeleine Duvic, MD, Lloyd E. King Jr, MD, PhD, h Amy J. McMichael, MD, 1 Valerie A. Randall, PhD, 1 Maria L. Turner, MD, 1 Leonard Sperling, MD, 1 David A. Whiting, MD,^m and David Norrisⁿ

Durbam, North Carolina; Minneapolis, Minnesota; San Francisco, California; Portland, Oregon; Vancouver, British Columbia, Canada; Fairfield, New Jersey; Houston, Texas; Nashville, Tennessee; Winston-Salem, North Carolina; West Yorksbire, United Kingdom; Bethesda, Maryland; Dallas, Texas; and Denver. Colorado

lopecia areata is an immunologically mediated disease characterized by extreme vari-Ability not only in the time of initial onset of hair loss but in the duration, extent and pattern of hair loss during any given episode of active loss. These variables, as well as the unpredictable nature of spontaneous regrowth and lack of a uniform response to various therapies, has made clinical trials in alopecia areata difficult to plan and implement. In fact, there are currently no drugs FDA-approved specifically for the indication of alopecia areata.

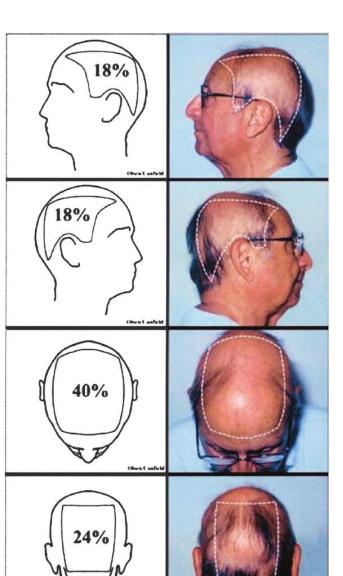
To help facilitate well-controlled clinical trials for alopecia areata, this National Alopecia Areata Foundation (NAAF) sponsored subgroup of investigators/clinicians experienced in clinical trials and/or in the clinical care of patients with alopecia areata has outlined some general principles and potential endpoints for clinical studies in alopecia areata. These guidelines build on the Alopecia Areata

From the Duke University Medical Center, Durhama; University of Minnesota, Minneapolis^b: University of California at San Francisco^c; Oregon Health & Science University, Portland^d; Skin Care Center, Vancouver⁶; Canfield Scientific, Fairfield⁶; University of Texas M. D. Anderson Cancer Center, Houston⁹; Vanderbilt University, Nashville^h; Wake Forest University Medical Center, Winston-Salemⁱ; University of Bradford, West Yorkshireⁱ; National Institute of Health, Rethesdak: Uniformed Services University of Health Sciences, Bethesdal; Baylor Hair Research and Treatment Center, Dallas^m; and the University of Colorado Health Sciences Center, Denver,¹

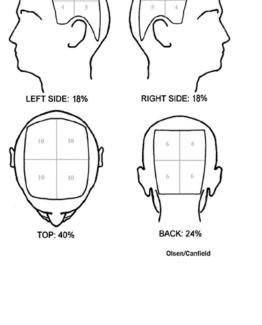
Funding sources: None. Conflicts of interest: None identified.

440

Reprint requests: Elise A. Olsen, MD, Duke University Medical Center, Box 3294, Durham, NC 27710. E-mail: olsen001@mc duke.edu. I Am Acad Dermatol 2004:51:440-7 0190-9622/\$30.00 © 2004 by the American Academy of Dermatology, Inc. doi:10.1016/Liaad.2003.09.032


Investigational Assessment Guidelines published in 19991 which established baseline clinical staging and background information important to gather on any alopecia areata patient involved in clinical research.

Recommended criteria for assessing a therapeutic response


A. General: The following information should be collected at baseline (in addition to that baseline information outlined in A-D (Part V) in the Alopecia Areata Investigational Assessment Guidelines1 (see Table I). Stratification is suggested for some characteristics that may have prognostic implications (ex: duration hair loss, percentage hair loss, pattern of hair loss). The stratification into subgroups is meant to prevent inappropriate clustering of patients in clinical therapeutic trials but should not substitute for the collection, and later analysis, of the unqualified data. 1. Duration of current episode of scalp hair loss

(beginning with when last had normal complement of scalp hair excluding hair loss from etiologies other than alopecia areata (such as androgenetic alopecia/pattern hair loss). May be stratified by subgroups of duration of current episode including: a. < 3 months

- b. 3-12 months
- c. 12-24 months
- d. >2-5 years
- e. >5 years
- 2. Percent scalp hair loss. This takes into account the percent of the scalp surface with no hair. The hair loss in patients with diffuse alopecia areata without discrete patches of alopecia cannot be captured by this method. Fig 1 is recommended as a visual aid. The diagrams of Fig 1 and the percentage scalp surface area

Ohen Canflet

SALT score	No. (%)
0-24	3 (10.34)
25-49	8 (27.59)
50-74	1 (3.45)
75-99	1 (3.45)
100	16 (55.17)

SALT: Severity of alopecia tool, SALT score ranges from 0 to 100, with 0 indicating no alopecia areata and 100 indicating severe disease

Baseline

Baseline SALT 64%. Duration of hair loss 12 years

Week 24

Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.

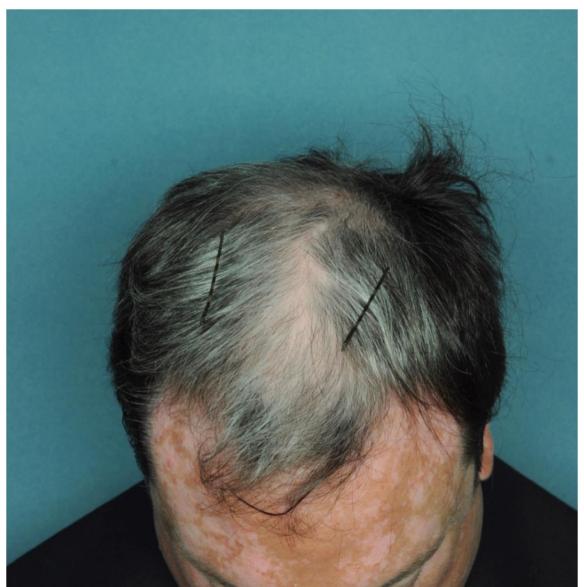
Baseline

Week 4

Week 8

Week 12



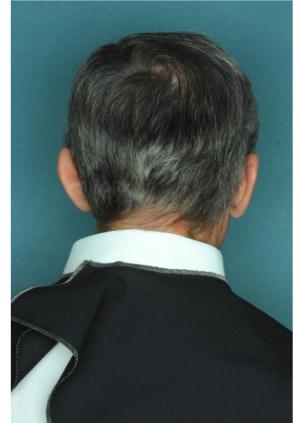

Week 20

Baseline

Duration of AA 12 years.

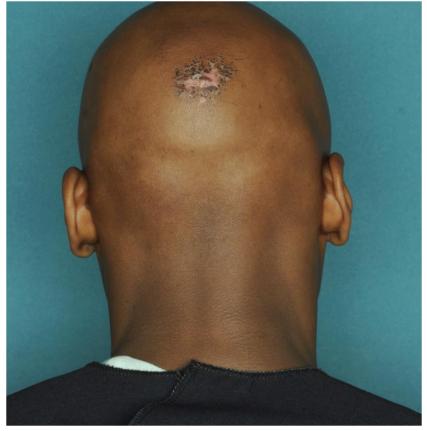
Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.

Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and AA



Harris et al, JAAD 2016

Baseline



Week 24

Baseline SALT 95%, duration 4 years

Baseline

Week 24



Baseline SALT 100%. Duration of hair loss 9 yrs

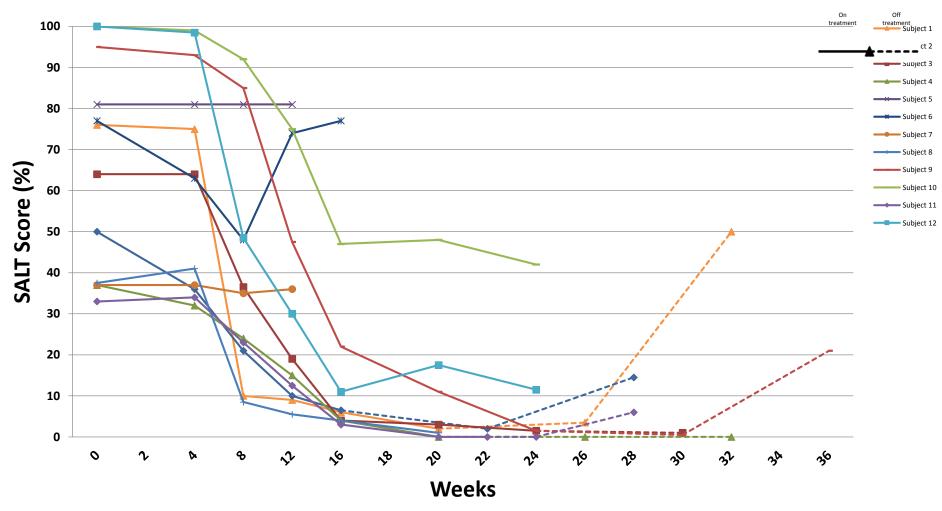
Baseline

Week 12

Baseline SALT 81%. Duration of hair loss 4 yrs

Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.

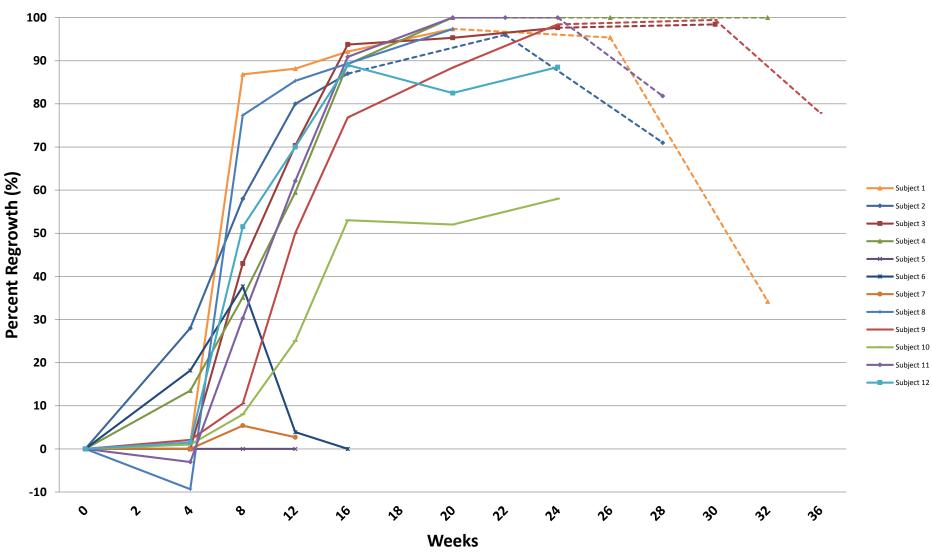
Ruxolitinib – Adverse Events and Relapse


AEs - Less frequent than anticipated

- Lowered white counts initially but remaining WNL therefore no dose adjustment required
- Lowered hgb 1 patient required dose modification
- 1 patient with 2 episodes furuncles/abscesses and reported possible biopsy site infection
- Mild URIs, 1 episode pneumonia
- No observed lowered platelets

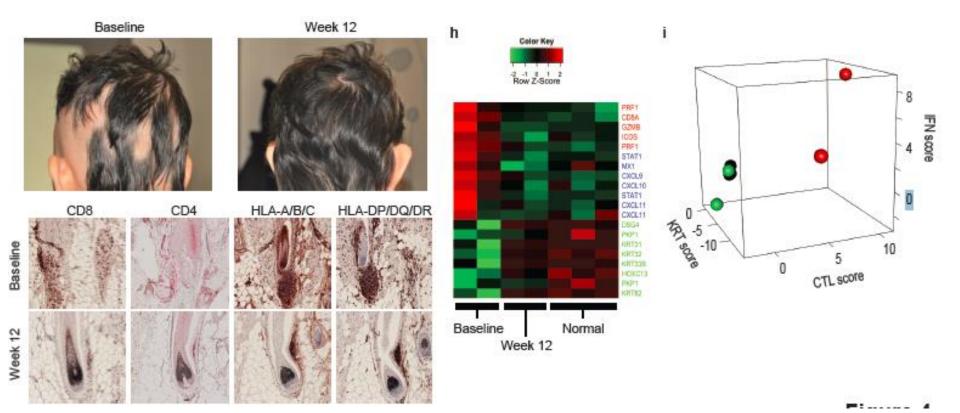
Relapse - observed in most patients by 2-3 months, ranging from mild (not noticeable) to moderate/severe

Ruxolitinib SALT scores

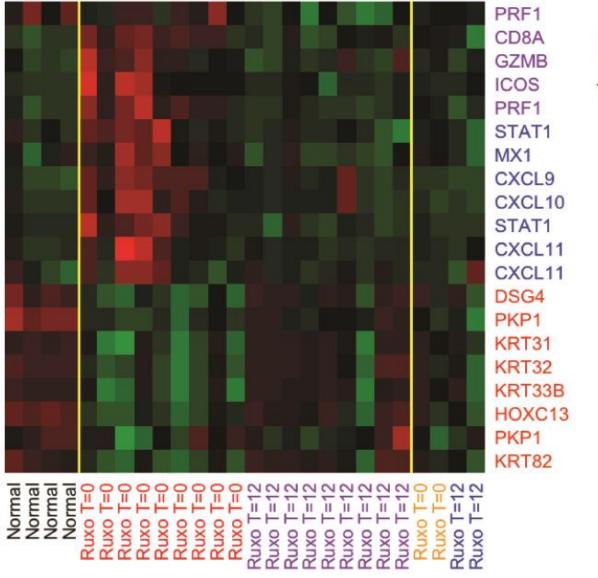

SALT Score (%) vs. Time

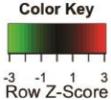
Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.

Ruxolitinib % regrowth

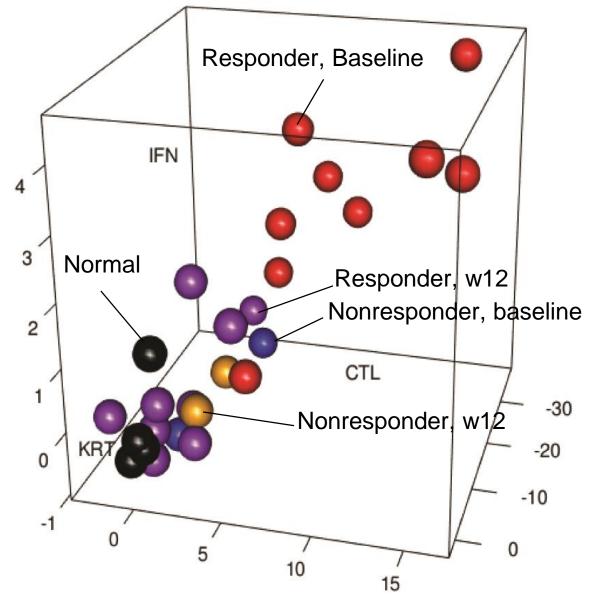

Percent Regrowth (%) vs. Time

Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.


Oral Ruxolitinib Clinically Reverses Moderate/Severe Alopecia Areata


On-Target Reversal of Inflammatory Biomarkers Early Data from Single Arm Open Label Study of 12 patients

Xing, et al. Nature Medicine 2014


Gene expression profiling before and after Ruxolitinib treatment

Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.

ALADIN score before and after ruxolitinib treatment

Mackay-Wiggan, et al. JCI Insight. 2016 15:e89790.

Tofacitinib Study Design PI: Julian Mackay-Wiggan, MD, MPH

- Open-label, single arm pilot study
- 12 patients –6 moderate to severe patchy AA and 6 AT/AU, duration of disease from 3-34 years
- Treated for 6 to 12 months with tofacitinib 5mg BID, up to 10mg BID.
- Efficacy measured by hair regrowth as determined by physical exam, SALT score and photography, and by patient and physician evaluation scores.
- Patients will be followed for another 6 months after end of treatment to evaluate the durability of response.
- Biopsies and peripheral blood will be obtained at baseline, weeks 4 and 24, for immune monitoring and molecular studies. Additional biopsies and blood draws (1-3 anticipated) may be obtained as clinically indicated
- QOL measures at baseline and at various additional time points

Week 40

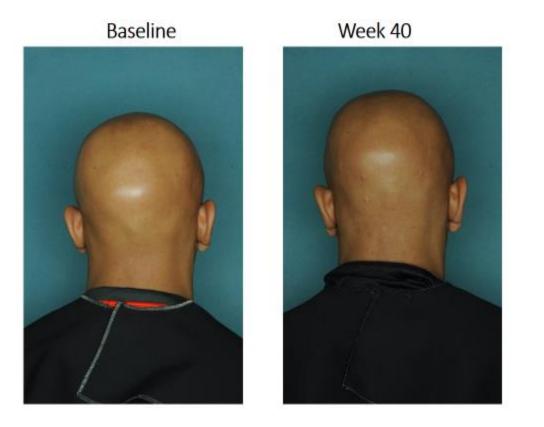

Baseline

Baseline SALT 100%, 5 mth 5mg BID, 2mth 10/5 mg BID, 3 mth 10 BID ongoing. Last SALT 39%

Week 36

Baseline

BL SALT 46, 5 months at 5mg BID, 2 months at 10/5mg, 2 months 10mg ongoing. Last SALT 12.

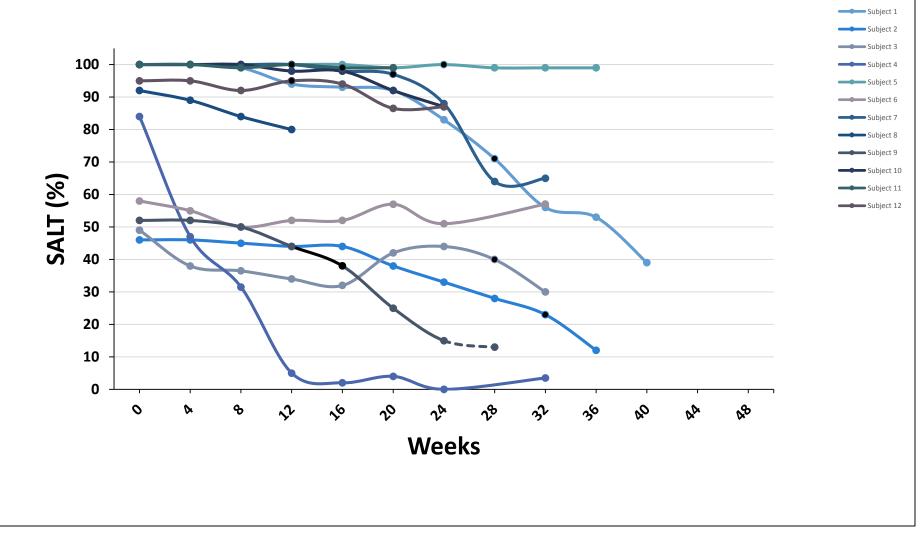

Baseline Week 24

BL SALT 84, 6 months 5mg BID, 0 months 10/5mg, 0 months 10mg, End of treatment SALT 0.

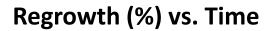
Baseline SALT 100%, 1 month – 5 mg BID, 2 months - 10 mg/5 mg, 9 months – 10 mg BID. Last SALT 13%

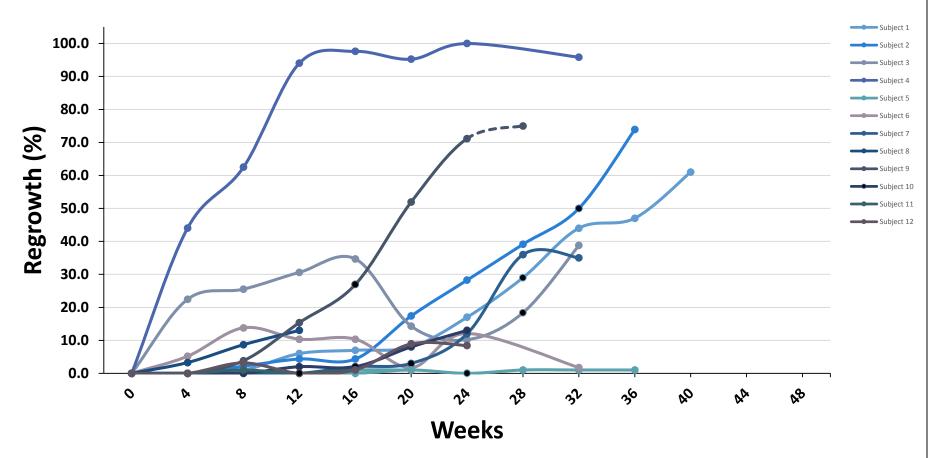
Tofacitinib – Subject 5 (non-responder)

Baseline SALT 100%, 3.5 months - 5 mg BID, 2 months 10 mg /5 mg, 2.5 months 10 mg BID. Last SALT 99%

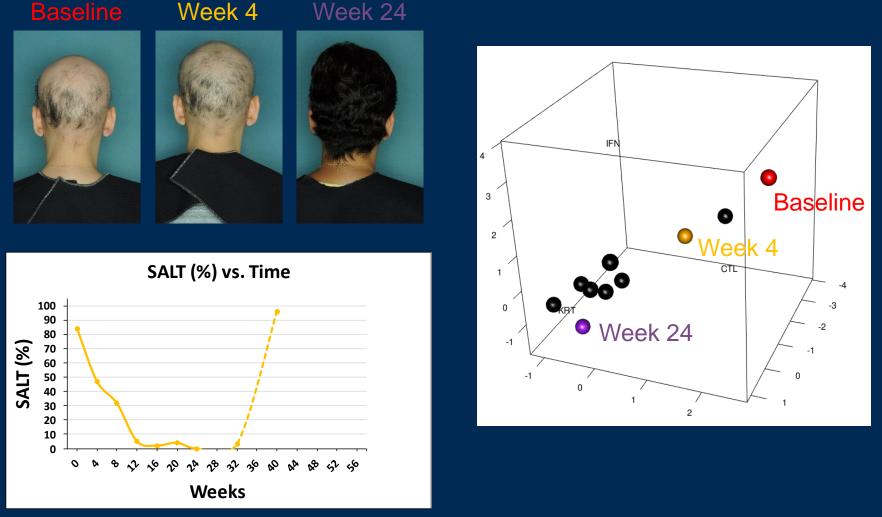

Tofacitinib

Timecourse of Treatment Response over 4 months



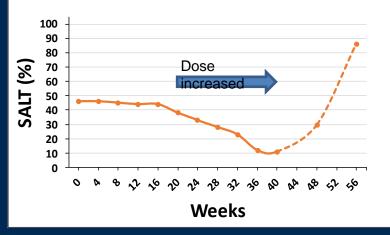

Tofacitinib SALT Scores

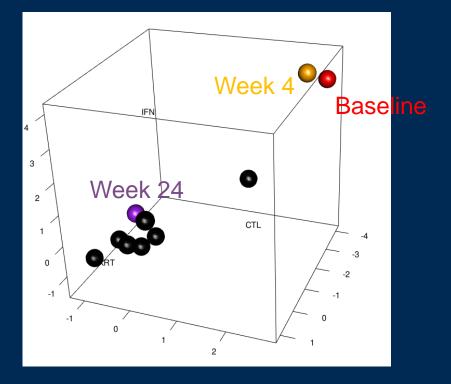
SALT (%) vs. Time

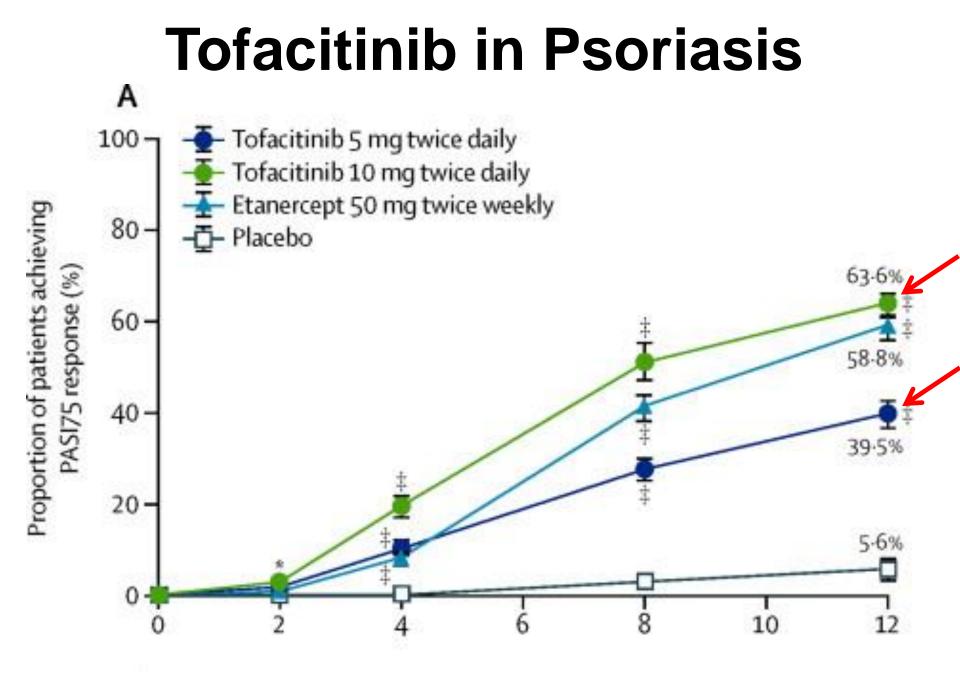

Tofacitinib Regrowth

Tofacitinib requires higher dose and longer duration of treatment (15mg or 20mg; >6 months)

Tofacitinib– Low Dose Responder




Tofacitinib– High Dose Responder



SALT (%) vs. Time

Bachelez et al., Lancet, 2015

Session III: Success Stories: Lessons from Clinical Studies with JAK inhibitors

Julian Mackay-Wiggan – Update on Clinical Research in AA

Ruxolitnib study – 12 patients, 20mg BID. Regrowth as early as 4 weeks. 9 of 12 had 50% regrowth.8 of 9 achieved their endpoint by week 12 (75% response rate). Tofacitinib study – 12 patients 5mg BID up to 10mg BID. Followed for 6 months. 7 of 12 had 50% regrowth. 6 of 7 responders needed dose escalation. (approx 60% response rate). Relapse 4-8 weeks after stopping. Abatacept study – one complete responder out of 15 treated – continued to regrow even after end of treatment. Biomarker analysis using gene expression performed in all studies.

Wilma Bergfeld – Cleveland Clinic AA Tofacitinib Results

Open retrospective study. Moderate to severe, recalcitrant patients, some with RA and AA. Thirteen patients, all recalcitrant to other therapies. Average regrowth at 4 months, some as late as 9 months. Some are on drug for 18 months. One AU patient was african american, regrew his eyebrows and lashes but not scalp and not body hair. Three patients had total regrowth. One was duration of 30 yrs. Response rate =approx 54%.

Justin Ko – Oral Tofa in Severe AA – Stanford/Yale Study

All patients are on 5mg BID and for 3 months duration only. Enrolled 70 patients – 66 finished study. Long durations 1-43 years; avg 5 years duration. ³/₄ were AU/AT patients. Biomarker analysis using gene expression studies. Outside the study – treating approx 80 patients. About 2/3 of patients grow clinically acceptable patients at 6 months or longer. Roughly 66% overall response rate.

Brett King – Tofa in AA in Adults and Adolescents

Approx 90 adult patients treated and 13 adolescents with tofa alone or tofa with pulse steroid. Overall response rate approx 60% in adults, 75% in teenagers. Patients with disease duration less than 11 years have better responses. Relapses seen while on treatment, and after drug stopped. Topical studies treating one patient with compounded ruxo, regrow brows. Three compounded tofa formulations, no positive results.

Elise Olsen/Incyte Study - Topical INCB018424 in AA in open-label treatment period

Study evaluated topical ruxo 1.5% cream in AA patients. Part A: open label 24 week study in 12 subjects. 18-70 yrs of age. Current episode of either 6 months 50-99% loss, or 12 months 25-50% loss. Exclusion of AT AU or ophaisis. 6 of 12 patients (approx 50% response rate) reached SALT50 response at end of 24 weeks. Promising data to encourage further development of topical JAKs.

Session III: Success Stories: Lessons from Clinical Studies with JAK inhibitors

National Alopecia Areata

Take home lessons from combined studies

•Relapse seen in all studies after treatment; sometimes worse than baseline, starting 4-8 weeks after stopping drug.

•Flares observed while on treatment in several studies, sometimes in different pattern (ophiasis) than original AA (12% in Yale study, 4 pts Stanford, 1 pt Columbia).

•African american individuals in non-responder groups (though also in responder groups).

•Ruxo treated patients regrowth visible earlier than tofa treated patients. Tofa required dose escalation in all studies, longer treatment periods.

•Each study had responses in patients with long durations of disease; however, two studies suggested that less than 10 years duration had better responses; one study suggested shorter duration of current episode correlated with better responses.

•Regional differences in regrowth: Eyebrows, lashes and body and facial hair don't correspond to scalp hair. Patients respond differently on different body sites.

•One study (Yale) added pulse prednisone 300mg Q4 weeks for 3 doses, in addition to elevated dose of tofa to improve responses. Comment by Dr. Shapiro that he has combined oral tofa with ILK and seen faster responses to tofa.

•Two studies (Stanford/Yale and Columbia) conducted gene expression biomarker analysis.

• No study reported improvement in AGA hair loss in patients taking JAK inhibitors. Perhaps not surprising; this may require topical administration.

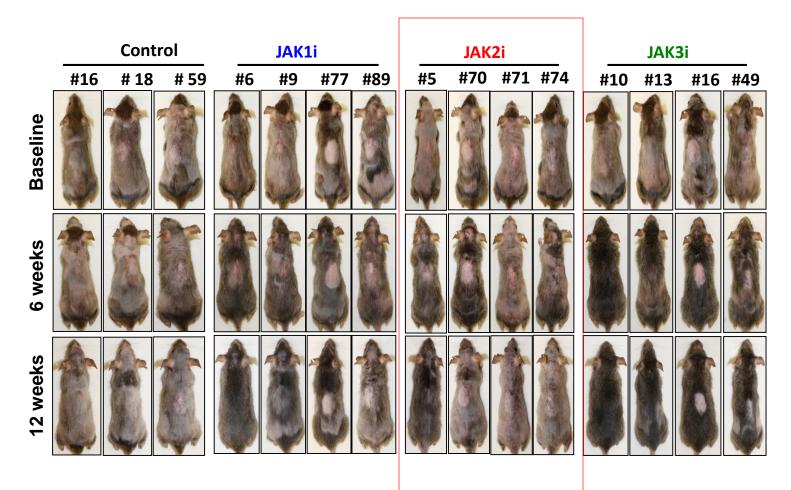
•AE: generally mild. Acne (8% in Yale study); trace hematuria (Columbia), eczema herpeticum (Stanford); LFT, lipid abnormality (Cleveland), URIs in all studies (consistent with seasonal patterns).

Despite widely heterogeneous groups of patients, durations of disease, different dosing regimens, and length of treatment, response rates were highly consistent across sites (range 50-75%):

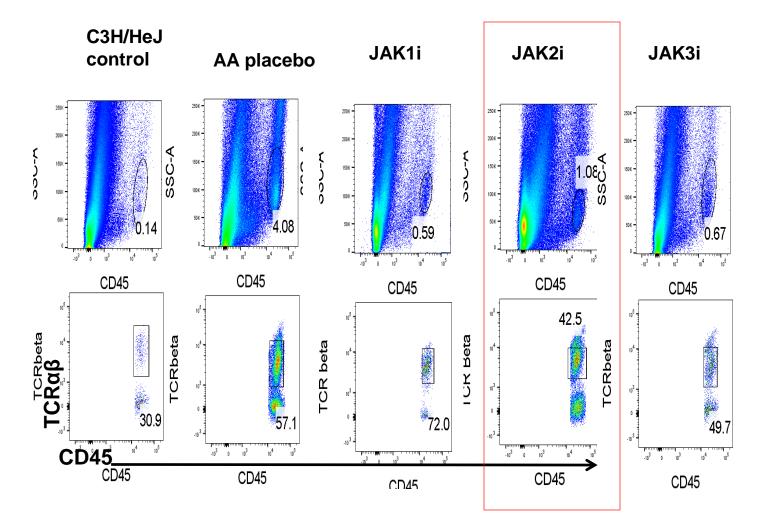
Columbia: Response to oral ruxo = 75%, oral tofa = 65%. Cleveland: Response rate =approx 54% oral tofa. Stanford: 66% overall response rate oral tofa. Yale: approx response rate 60% in adults, 75% in adolescents for oral tofa. Duke/Incyte: approx response rate 50% for topical ruxo.

	Type of study	Treatment	Number of patients	Length of treatment	Response rate
Crispin et al, JCI Sept 2016	Open label, single-arm	Tofacitinib 5mg BD	n = 66	3 months	32% at least 50% regrowth
Mackay-Wiggan et al, JCI Sept 2016	Open label, single arm	Ruxolitinib 20mg BD	n = 12	3-6 months	75% at least 50% regrowth
Liu et al, JAAD 2017	Retrospective	Tofacitinib 5mg BD	n = 90	Median 12 months (4-18)	77% at least 50% regrowth 20% complete response
Ibrahim et al, JAMA Dermatology 2017	Retrospective	Tofacitinib 5mg BD	n = 13	Mean 4.2 months (1-9)	53.8% at least 50% regrowth
Craiglow et al, JAAD 2017	Retrospective	Tofacitinib 5mg BD	n = 13 (adolescents)	Median 5 months (2-16)	76.9% response with median 100% regrowth (20-100%)
Craiglow et al, J Invest Dermatol 2014	Case Report	Tofacitinib 10mg AM, 5mg ON	n = 1 (AU)	8 months	Complete regrowth
Jabbari et al, EBioMedicine 2015	Case Report	Baricitinib 7mg AM, 4mg ON for CANDLE*	n = 1	9 months	Complete regrowth
Pieri et al, Am J Heamatol 2015	Case Report	Ruxolitinib 20mg BD for ET**	n = 1 (AU)	10 months	Complete regrowth
Gupta et al, JEADV 2016	Case Report	Tofacitinib 5mg BD	n = 2 (AU)	8 months	Complete regrowth in both patients
Harris et al, JAAD 2016	Case Report	Ruxolitinib 20mg BD	n = 1	6 months	85% regrowth, maintained 12 weeks after cessation
Dhayalan et al, JAMA Dermatol 2016	Case Report	Tofacitinib 5mg BD	n = 3	5-6 months	Improvement in nail dystrophy, 2 out of 3 experienced hair regrowth
Scheinberg et al, Ann Intern Med 2016	Case Report	Tofacitinib 5mg BD	n = 2 (AU)	9 months	Partial regrowth
Ferreira et al, Case Rep Dermatol 2016	Case Report	Tofacitinib 5mg BD	n = 1 (AU)	10 months	Complete regrowth, and improvement in nail changes
Mrowietz et al, Acta Derm Venereol 2017	Case Report	Tofacitinib 10mg OD for PsA***	n = 1 (AU)	9 months	Complete regrowth
Erduran et al, Acta Dermatovenerol Alp Pannonica Adriat 2017	Case Report	Tofacitinib 10mg AM, 5mg ON	n = 1 (AU)	6 months	Complete regrowth

* Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature ** Essential Thrombocytopenia *** PsA = Psoriatic Arthritis


Efficacy of Selective Nextgeneration JAK inhibitors in the treatment of AA

AA molecular signatures reveal JAK1/3 predominance


Signat	Human		
ure		Mouse	
CTL	GZMA(3.65x), <u>CD8A(3.04x)</u> , GZMB(2.75x), GZMK(2.68x), PRF1(2.30x), LCP2(2.29x), THEMIS(2.14x), CD2(2.22x)	Gzma(56.37x), <u>Cd8a(9.05x)</u> , Gzmb(21.74x), Gzmk(2.61x), Prf1(1.62x), Lcp2(2.32x), Themis(1.84x),Cd2(3.32x)	
IFN	CXCL10(12.37x), CXCL9(9.53x), MMP12(4.04x), IFI44(3.03x), SPP1(2.69x), IRF8(2.64x), PTPRC(2.63x), CCL2(2.54x), RSAD2(2.49x), CCL5(2.36x), IFIT2(2.28x), C1S(2.28x), LTLR3(2.25x), IFIT3(2.19x), OAS2(2.12x), GBP1(2.11X), XCL1(2.05x), CCR2(2.04x), JAK1 (0.85x), STAT1 (1.86x), IFNG(1.57x),	Cxcl10(37.58x), Cxcl9(42.30x), Mmp12(10.18x), Ifi44(20.58x), Spp1(10.61x), Irf8(4.44x), Ptprc(2.1x), Ccl2(6.12x), Rsad2(3.20x), Ccl5(27.95x), Ifit2(2.39x), C1s(2.49x), Tlr3(2.34x), Ifit3(4.75x), Oas2(3.97x), Gbp1(17.81x), Xcl1(2.88x), Ccr2(4.66x), Cxcl11(53.33x), Stat1 (14.48x), Jak1 (1.40x), Ifng (4.71x),	
үс	IL15(2.24x), <u>JAK3 (2.10x),</u> IL2RG(2.08x), IL2RB(1.98x), IL15RA(1.60x), IL21R(1.84x), IL2RA(1.12x), IL7(2.20x), IL7RA(1.61x)	II15(0.80x), <u>Jak3 (1.39x)</u> , II2rg(2.94x), II2rb(3.14x), II15ra(1.40x), II21r(1.69x), II2ra(1.57x), II7(1.99x), II7ra(2.39x)	
Other	SIA4(2.94x), GPR65(2.60x), GLIPR1(2.29x), IKZF1(2.29x), CD274(PDL1) (2.17x), SAMD9L(2.16x), LCP1(2.15x), SASH3(2.09x), ATP8B4(2.07x)	sia4(1.86x), Gpr65(3.25x), Glipr1(2.33x), Ikzf1(2.34x), Cd274 (PDL1) (8.41x), Samd9l(4.37x), Lcp1(2.25x), Sash3(2.76x), Atp8b4(3.44x)	

How critical is JAK2 in AA?

Targeting with Topical JAK1i or JAK3i (but not JAK2i) reverses AA

JAK1i and JAK3i (but not JAK2i) inhibit skin infiltrating leukocytes

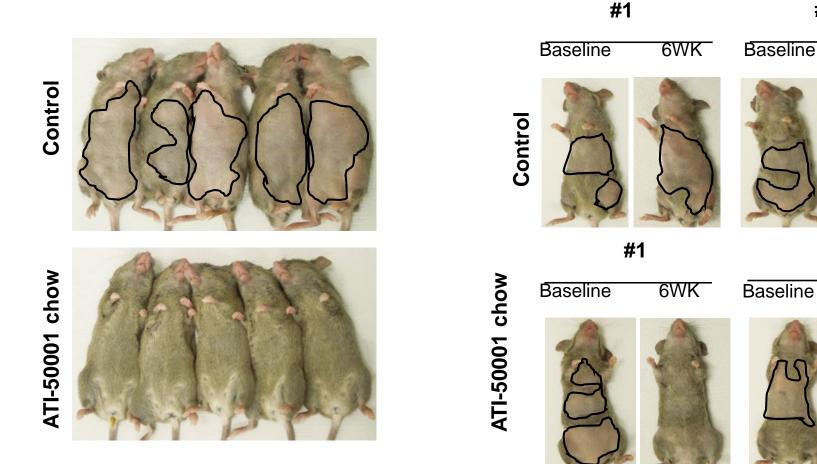
JAK2 inhibition is *not* required for efficacy in Alopecia Areata

Investigation of JAK1/3 selective compound, ATI-50001/50002

Compound	JAK1/JAK3 Enzyme IC ₅₀ (nM)	IL2 pSTAT5 (JAK1/JAK3) IC ₅₀ (nM)	INFg pSTAT1 (JAK1/JAK2) IC ₅₀ (nM)	GMCSF pSTAT5 (JAK2/JAK2) IC ₅₀ (nM)
ATI-50002	2/36	9	38	>20000
Ruxo	2/701	8	9	88
Bari	2/5	5	11	57
Tofa	3/1	12	55	241

Systemic ATI-50001 (JAK1/3i) prevents and reverses AA

Prevention


Reversal

#2

#2

6WK

6WK

Topical ATI-50002 (JAK1/3i) reverses AA

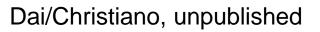
#1

Base line

#2

#2

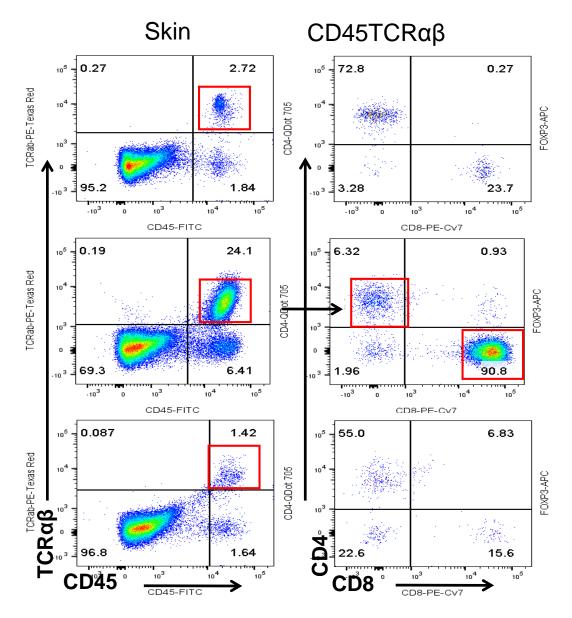
Base line 20 WK


Base line 20 WK

Vehicle ١

#1

ATI-50002



ATI-50001 inhibits AA effector T cells in skin

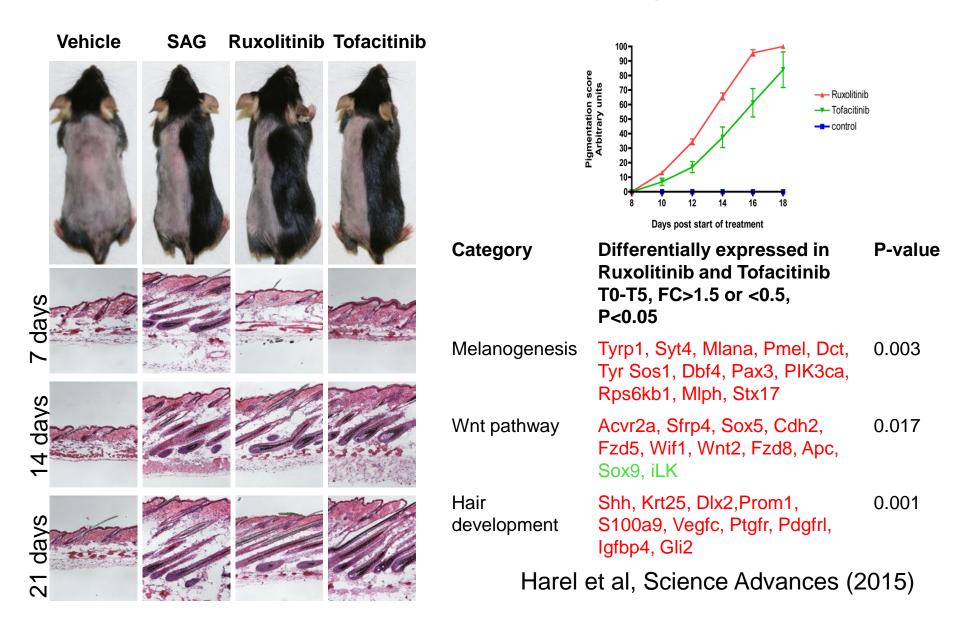
C3H/HeJ (ungrafted control, without AA)

C3H/HeJ (grafted with AA, placebo group)

C3H/HeJ (grafted with AA; treated with ATI-50001)

JAK inhibitors in dermatology

psoriasis atopic dermatitis vitiligo Sezary syndrome epidermolysis bullosa/SCC CANDLE syndrome


alopecia areata

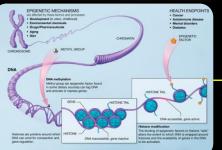
...other types of alopecia?

Scarring alopecias (LPP, FFA) Androgenetic alopecia

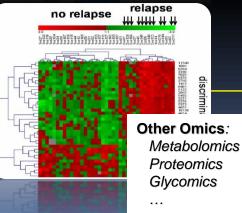
JAK inhibitors initiate hair growth in normal mice

Relevance for disorders with arrested telogen, like AGA?

JAK inhibitors in LPP


Courtesy of Dr. Lindsey Bordone, Columbia University

Functional Genomics: New Drugs for

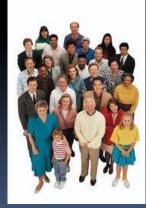

Genomics

\$50007- \$33333-	
1:555537-	
1555537-	
:553333-	A 10 10 10
\$55957-	
7	
50007- 53335-	
8	
-55553-	
:555557:	
10	
20000-	
.55335-	
	1.111

Epigenomics

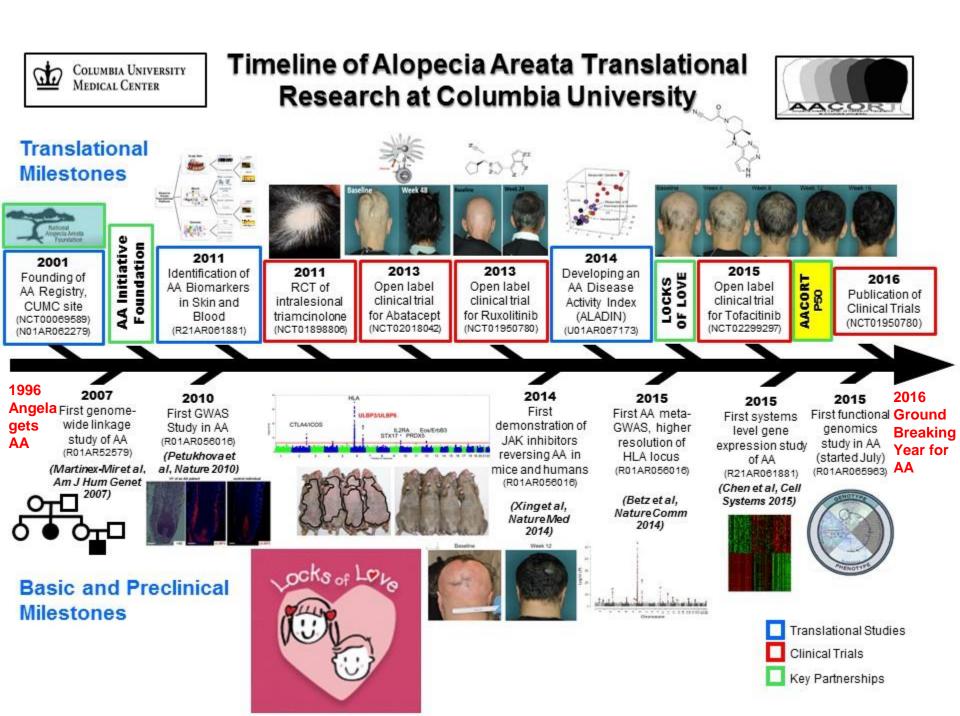
Transcriptomics

discrimin


Cancer Prevention Diagnosis Treatment **Cell Regulatory Logic**

Protein DNA

Protein Protein Protein Membrane


Drugs & Biomarkers

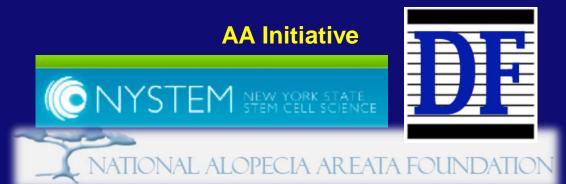
Clinical Trials

Courtesy of Dr. Andrea Califano

Acknowledgements

Raphael Clynes Julian Mackay-Wiggan

Madeleine Duvic Maria Hordinsky Vera Price David Norris


Annemieke deJong Zhenpeng Dai Ali Jabbari Luzhou Xing Eddy Wang Etienne Wang

IIAMS National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institutes of Health, Department of Health and Human Services

Lynn Petukhova Colin Jahoda Peter Gregersen David Altshuler Mark Daly Abraham Zlotogorski Regina Betz Marcus Nothen Jane Cerise Esther Drill Andrea Califano

